Source code for dispaset.postprocessing.postprocessing

# -*- coding: utf-8 -*-
"""
Set of functions useful to analyse to DispaSET output data.

@author: Sylvain Quoilin, JRC
"""

from __future__ import division

import datetime as dt
import logging
import sys

import numpy as np
import pandas as pd

from ..common import commons
from .data_handler import ds_to_df


[docs]def get_load_data(inputs, z): """ Get the load curve, the residual load curve, and the net residual load curve of a specific zone :param inputs: DispaSET inputs (output of the get_sim_results function) :param z: Zone to consider (e.g. 'BE') :return out: Dataframe with the following columns: Load: Load curve of the specified zone ResidualLoad: Load minus the production of variable renewable sources NetResidualLoad: Residual netted from the interconnections with neightbouring zones """ datain = inputs['param_df'] out = pd.DataFrame(index=datain['Demand'].index) out['Load'] = datain['Demand']['DA', z] if ('Flex', z) in datain['Demand']: out['Load'] += datain['Demand'][('Flex', z)] # Listing power plants with non-dispatchable power generation: VREunits = [] VRE = np.zeros(len(out)) for t in commons['tech_renewables']: for u in datain['Technology']: if datain['Technology'].loc[t, u]: VREunits.append(u) VRE = VRE + datain['AvailabilityFactor'][u].values * datain['PowerCapacity'].loc[u, 'PowerCapacity'] Interconnections = np.zeros(len(out)) for l in datain['FlowMinimum']: if l[:2] == z: Interconnections = Interconnections - datain['FlowMinimum'][l].values elif l[-2:] == z: Interconnections = Interconnections + datain['FlowMinimum'][l].values out['ResidualLoad'] = out['Load'] - VRE out['NetResidualLoad'] = out['ResidualLoad'] - Interconnections return out
[docs]def aggregate_by_fuel(PowerOutput, Inputs, SpecifyFuels=None): """ This function sorts the power generation curves of the different units by technology :param PowerOutput: Dataframe of power generationwith units as columns and time as index :param Inputs: Dispaset inputs version 2.1.1 :param SpecifyFuels: If not all fuels should be considered, list containing the relevant ones :returns PowerByFuel: Dataframe with power generation by fuel """ if SpecifyFuels is None: if isinstance(Inputs, list): fuels = Inputs[0]['f'] elif isinstance(Inputs, dict): fuels = Inputs['sets']['f'] else: logging.error('Inputs variable no valid') sys.exit(1) else: fuels = SpecifyFuels PowerByFuel = pd.DataFrame(0, index=PowerOutput.index, columns=fuels) uFuel = Inputs['units']['Fuel'] for u in PowerOutput: if uFuel[u] in fuels: PowerByFuel[uFuel[u]] = PowerByFuel[uFuel[u]] + PowerOutput[u] else: logging.warning('Fuel not found for unit ' + u + ' with fuel ' + uFuel[u]) return PowerByFuel
[docs]def filter_by_zone(PowerOutput, inputs, z): """ This function filters the dispaset Output Power dataframe by zone :param PowerOutput: Dataframe of power generationwith units as columns and time as index :param Inputs: Dispaset inputs version 2.1.1 :param z: Selected zone (e.g. 'BE') :returns Power: Dataframe with power generation by zone """ loc = inputs['units']['Zone'] Power = PowerOutput.loc[:, [u for u in PowerOutput.columns if loc[u] == z]] return Power
[docs]def filter_by_tech(PowerOutput, inputs, t): """ This function filters the dispaset power output dataframe by technology :param PowerOutput: Dataframe of power generation with units as columns and time as index :param inputs: Dispaset inputs version 2.1.1 :param t: Selected tech (e.g. 'HDAM') :returns Power: """ loc = inputs['units']['Technology'] Power = PowerOutput.loc[:, [u for u in PowerOutput.columns if loc[u] == t]] return Power
[docs]def filter_by_storage(PowerOutput, Inputs, StorageSubset=None): """ This function filters the power generation curves of the different storage units by storage type :param PowerOutput: Dataframe of power generationwith units as columns and time as index :param Inputs: Dispaset inputs version 2.1.1 :param SpecifySubset: If not all EES storages should be considered, list containing the relevant ones :returns PowerByFuel: Dataframe with power generation by fuel """ storages = Inputs['sets'][StorageSubset] Power = PowerOutput.loc[:, PowerOutput.columns.isin(storages)] return Power
[docs]def get_plot_data(inputs, results, z): """ Function that reads the results dataframe of a DispaSET simulation and extract the dispatch data spedific to one zone :param results: Pandas dataframe with the results (output of the GdxToDataframe function) :param z: Zone to be considered (e.g. 'BE') :returns plotdata: Dataframe with the dispatch data storage and outflows are negative """ tmp = filter_by_zone(results['OutputPower'], inputs, z) plotdata = aggregate_by_fuel(tmp, inputs) if 'OutputStorageInput' in results: #onnly take the columns that correspond to storage units (StorageInput is also used for CHP plants): cols = [col for col in results['OutputStorageInput'] if inputs['units'].loc[col,'Technology'] in commons['tech_storage']] tmp = filter_by_zone(results['OutputStorageInput'][cols], inputs, z) bb = pd.DataFrame() for tech in commons['tech_storage']: aa = filter_by_tech(tmp, inputs, tech) aa = aa.sum(axis=1) aa = pd.DataFrame(aa,columns=[tech]) bb = pd.concat([bb,aa],axis=1) bb = -bb plotdata = pd.concat([plotdata,bb], axis=1) # plotdata['Storage'] = -tmp.sum(axis=1) else: plotdata['Storage'] = 0 plotdata.fillna(value=0, inplace=True) plotdata['FlowIn'] = 0 plotdata['FlowOut'] = 0 for col in results['OutputFlow']: from_node, to_node = col.split('->') if to_node.strip() == z: plotdata['FlowIn'] = plotdata['FlowIn'] + results['OutputFlow'][col] if from_node.strip() == z: plotdata['FlowOut'] = plotdata['FlowOut'] - results['OutputFlow'][col] # re-ordering columns: OrderedColumns = [col for col in commons['MeritOrder'] if col in plotdata.columns] plotdata = plotdata[OrderedColumns] # remove empty columns: for col in plotdata.columns: if plotdata[col].max() == 0 and plotdata[col].min()==0: del plotdata[col] return plotdata
[docs]def get_imports(flows, z): """ Function that computes the balance of the imports/exports of a given zone :param flows: Pandas dataframe with the timeseries of the exchanges :param z: Zone to consider :returns NetImports: Scalar with the net balance over the whole time period """ NetImports = 0 for key in flows: if key[:len(z)] == z: NetImports -= flows[key].sum() elif key[-len(z):] == z: NetImports += flows[key].sum() return NetImports
# %%
[docs]def get_result_analysis(inputs, results): """ Reads the DispaSET results and provides useful general information to stdout :param inputs: DispaSET inputs :param results: DispaSET results """ # inputs into the dataframe format: dfin = inputs['param_df'] StartDate = inputs['config']['StartDate'] StopDate = inputs['config']['StopDate'] index = pd.date_range(start=dt.datetime(*StartDate), end=dt.datetime(*StopDate), freq='h') # Aggregated values: demand = {} for z in inputs['sets']['n']: if 'OutputPowerConsumption' in results: demand_p2h = filter_by_zone(results['OutputPowerConsumption'], inputs, z) demand_p2h = demand_p2h.sum(axis=1) else: demand_p2h = pd.Series(0, index=results['OutputPower'].index) if ('Flex', z) in inputs['param_df']['Demand']: demand_flex = inputs['param_df']['Demand'][('Flex', z)] else: demand_flex = pd.Series(0, index=results['OutputPower'].index) demand_da = inputs['param_df']['Demand'][('DA', z)] demand[z] = pd.DataFrame(demand_da + demand_p2h + demand_flex, columns = [('DA', z)]) demand = pd.concat(demand, axis=1) demand.columns = demand.columns.droplevel(-1) TotalLoad = demand.sum().sum() PeakLoad = demand.sum(axis=1).max(axis=0) LoadShedding = results['OutputShedLoad'].sum().sum() / 1e6 Curtailment = results['OutputCurtailedPower'].sum().sum() MaxCurtailemnt = results['OutputCurtailedPower'].sum(axis=1).max() / 1e6 MaxLoadShedding = results['OutputShedLoad'].sum(axis=1).max() if 'OutputDemandModulation' in results: ShiftedLoad_net = results['OutputDemandModulation'].sum().sum() / 1E6 ShiftedLoad_tot = results['OutputDemandModulation'].abs().sum().sum()/2 /1E6 if ShiftedLoad_net > 0.1 * ShiftedLoad_tot: logging.error('The net shifted load is higher than 10% of the total shifted load, although it should be zero') else: ShiftedLoad_tot = 0 # TotalLoad = dfin['Demand']['DA'].loc[index, :].sum().sum() # # PeakLoad = inputs['parameters']['Demand']['val'][0,:,idx].sum(axis=0).max() # PeakLoad = dfin['Demand']['DA'].sum(axis=1).max(axis=0) NetImports = -get_imports(results['OutputFlow'], 'RoW') Cost_kwh = results['OutputSystemCost'].sum() / (TotalLoad - NetImports) print ('\nAverage electricity cost : ' + str(Cost_kwh) + ' EUR/MWh') for key in ['LostLoad_RampUp', 'LostLoad_2D', 'LostLoad_MinPower', 'LostLoad_RampDown', 'LostLoad_2U', 'LostLoad_3U', 'LostLoad_MaxPower', 'LostLoad_WaterSlack']: if key == 'LostLoad_WaterSlack': if isinstance(results[key], pd.Series): LL = results[key].sum() else: LL = results[key] else: LL = results[key].values.sum() if LL > 0.0001 * TotalLoad: logging.critical('\nThere is a significant amount of lost load for ' + key + ': ' + str( LL) + ' MWh. The results should be checked carefully') elif LL > 100: logging.warning('\nThere is lost load for ' + key + ': ' + str( LL) + ' MWh. The results should be checked') print ('\nAggregated statistics for the considered area:') print ('Total Consumption:' + str(TotalLoad / 1E6) + ' TWh') print ('Peak Load:' + str(PeakLoad) + ' MW') print ('Net Importations:' + str(NetImports / 1E6) + ' TWh') print ('Total Load Shedding:' + str(LoadShedding) + ' TWh') print ('Total shifted load:' + str(ShiftedLoad_tot) + ' TWh') print ('Maximum Load Shedding:' + str(MaxLoadShedding) + ' MW') print ('Total Curtailed RES:' + str(Curtailment) + ' TWh') print ('Maximum Curtailed RES:' + str(MaxCurtailemnt) + ' MW') # Zone-specific values: ZoneData = pd.DataFrame(index=inputs['sets']['n']) if 'Flex' in dfin['Demand']: ZoneData['Flexible Demand'] = inputs['param_df']['Demand']['Flex'].sum(axis=0) / 1E6 ZoneData['Demand'] = dfin['Demand']['DA'].sum(axis=0) / 1E6 + ZoneData['Flexible Demand'] ZoneData['PeakLoad'] = (dfin['Demand']['DA']+dfin['Demand']['Flex']).max(axis=0) else: ZoneData['PeakLoad'] = dfin['Demand']['DA'].max(axis=0) ZoneData['Demand'] = dfin['Demand']['DA'].sum(axis=0) / 1E6 ZoneData['NetImports'] = 0 for z in ZoneData.index: ZoneData.loc[z, 'NetImports'] = get_imports(results['OutputFlow'], str(z)) / 1E6 ZoneData['LoadShedding'] = results['OutputShedLoad'].sum(axis=0) / 1E6 ZoneData['MaxLoadShedding'] = results['OutputShedLoad'].max() if 'OutputDemandModulation' in results: ZoneData['ShiftedLoad'] = results['OutputDemandModulation'].abs().sum() / 1E6 ZoneData['Curtailment'] = results['OutputCurtailedPower'].sum(axis=0) / 1E6 ZoneData['MaxCurtailment'] = results['OutputCurtailedPower'].max() print('\nZone-Specific values (in TWh or in MW):') print(ZoneData) # Congestion: Congestion = {} if 'OutputFlow' in results: for l in results['OutputFlow']: if l[:3] != 'RoW' and l[-3:] != 'RoW': Congestion[l] = np.sum( (results['OutputFlow'][l] == dfin['FlowMaximum'].loc[results['OutputFlow'].index, l]) & ( dfin['FlowMaximum'].loc[results['OutputFlow'].index, l] > 0)) print("\nNumber of hours of congestion on each line: ") import pprint pprint.pprint(Congestion) # Zone-specific storage data: try: StorageData = pd.DataFrame(index=inputs['sets']['n']) for z in StorageData.index: isstorage = pd.Series(index=inputs['units'].index) for u in isstorage.index: isstorage[u] = inputs['units'].Technology[u] in commons['tech_storage'] sto_units = inputs['units'][(inputs['units'].Zone == z) & isstorage] StorageData.loc[z,'Storage Capacity [MWh]'] = (sto_units.Nunits*sto_units.StorageCapacity).sum() StorageData.loc[z,'Storage Power [MW]'] = (sto_units.Nunits*sto_units.PowerCapacity).sum() StorageData.loc[z,'Peak load shifting [hours]'] = StorageData.loc[z,'Storage Capacity [MWh]']/ZoneData.loc[z,'PeakLoad'] AverageStorageOutput = 0 for u in results['OutputPower'].columns: if u in sto_units.index: AverageStorageOutput += results['OutputPower'][u].mean() StorageData.loc[z,'Average daily cycle depth [%]'] = AverageStorageOutput*24/(1e-9+StorageData.loc[z,'Storage Capacity [MWh]']) print('\nZone-Specific storage data') print(StorageData) except: logging.error('Could compute storage data') StorageData = None co2 = results['OutputPower'].sum() * inputs['param_df']['EmissionRate'] # MWh * tCO2 / MWh = tCO2 co2.fillna(0,inplace=True) UnitData = pd.DataFrame(index=inputs['sets']['u']) UnitData.loc[:, 'Fuel'] = inputs['units']['Fuel'] UnitData.loc[:, 'Technology'] = inputs['units']['Technology'] UnitData.loc[:, 'Zone'] = inputs['units']['Zone'] UnitData.loc[:, 'CHP'] = inputs['units']['CHPType'] UnitData.loc[:, 'Generation [TWh]'] = results['OutputPower'].sum() / 1e6 UnitData.loc[:, 'CO2 [t]'] = co2.loc['CO2',:] UnitData.loc[:, 'Total Costs [EUR]'] = get_units_operation_cost(inputs, results).sum() print('\nUnit-Specific data') print(UnitData) FuelData = {} chp = {'Extraction': 'CHP', 'back-pressure': 'CHP', 'P2H': 'CHP', '': 'Non-CHP'} tmp = UnitData tmp['CHP'] = tmp['CHP'].map(chp) for bo in ['CHP', 'Non-CHP']: tmp_data = tmp.loc[tmp['CHP'] == bo] FuelData[bo] = {} for l in ['Generation [TWh]','CO2 [t]','Total Costs [EUR]']: FuelData[bo][l] = pd.DataFrame(index=inputs['sets']['f'], columns=inputs['sets']['t']) for f in inputs['sets']['f']: for t in inputs['sets']['t']: FuelData[bo][l].loc[f,t] = tmp_data.loc[(tmp_data['Fuel'] == f) & (tmp_data['Technology'] == t)][l].sum() return {'Cost_kwh': Cost_kwh, 'TotalLoad': TotalLoad, 'PeakLoad': PeakLoad, 'NetImports': NetImports, 'Curtailment': Curtailment, 'MaxCurtailment': MaxCurtailemnt, 'ShedLoad': LoadShedding,'ShiftedLoad':ShiftedLoad_tot, 'MaxShedLoad': MaxLoadShedding, 'ZoneData': ZoneData, 'Congestion': Congestion, 'StorageData': StorageData, 'UnitData': UnitData, 'FuelData': FuelData}
[docs]def get_indicators_powerplant(inputs, results): """ Function that analyses the dispa-set results at the power plant level Computes the number of startups, the capacity factor, etc :param inputs: DispaSET inputs :param results: DispaSET results :returns out: Dataframe with the main power plants characteristics and the computed indicators """ out = inputs['units'].loc[:, ['Nunits','PowerCapacity', 'Zone', 'Technology', 'Fuel']] out['startups'] = 0 for u in out.index: if u in results['OutputCommitted']: # count the number of start-ups values = results['OutputCommitted'].loc[:, u].values diff = -(values - np.roll(values, 1)) startups = diff > 0 out.loc[u, 'startups'] = startups.sum() out['CF'] = 0 out['Generation'] = 0 for u in out.index: if u in results['OutputPower']: # count the number of start-ups out.loc[u, 'CF'] = results['OutputPower'][u].mean() / (out.loc[u, 'PowerCapacity']*out.loc[u,'Nunits']) out.loc[u, 'Generation'] = results['OutputPower'][u].sum() return out
[docs]def CostExPost(inputs,results): """ Ex post computation of the operational costs with plotting. This allows breaking down the cost into its different components and check that it matches with the objective function from the optimization. The cost objective function is the following: SystemCost(i) =E= sum(u,CostFixed(u)*Committed(u,i)) +sum(u,CostStartUpH(u,i) + CostShutDownH(u,i)) +sum(u,CostRampUpH(u,i) + CostRampDownH(u,i)) +sum(u,CostVariable(u,i) * Power(u,i)) +sum(l,PriceTransmission(l,i)*Flow(l,i)) +sum(n,CostLoadShedding(n,i)*ShedLoad(n,i)) +sum(chp, CostHeatSlack(chp,i) * HeatSlack(chp,i)) +sum(chp, CostVariable(chp,i) * CHPPowerLossFactor(chp) * Heat(chp,i)) +Config("ValueOfLostLoad","val")*(sum(n,LL_MaxPower(n,i)+LL_MinPower(n,i))) +0.8*Config("ValueOfLostLoad","val")*(sum(n,LL_2U(n,i)+LL_2D(n,i)+LL_3U(n,i))) +0.7*Config("ValueOfLostLoad","val")*sum(u,LL_RampUp(u,i)+LL_RampDown(u,i)) +Config("CostOfSpillage","val")*sum(s,spillage(s,i)); :returns: tuple with the cost components and their cumulative sums in two dataframes. """ import datetime dfin = inputs['param_df'] timeindex = results['OutputPower'].index costs = pd.DataFrame(index=timeindex) #%% Fixed Costs: costs['FixedCosts'] = 0 for u in results['OutputCommitted']: if u in dfin['CostFixed'].index: costs['FixedCosts'] =+ dfin.loc[u,'CostFixed'] * results['OutputCommitted'][u] #%% Ramping and startup costs: indexinitial = timeindex[0] - datetime.timedelta(hours=1) powerlong = results['OutputPower'].copy() powerlong.loc[indexinitial,:] = 0 powerlong.sort_index(inplace=True) committedlong = results['OutputCommitted'].copy() for u in powerlong: if u in dfin['PowerInitial'].index: powerlong.loc[indexinitial,u] = dfin['PowerInitial'].loc[u,'PowerInitial'] committedlong.loc[indexinitial,u] = dfin['PowerInitial'].loc[u,'PowerInitial']>0 committedlong.sort_index(inplace=True) powerlong_shifted = powerlong.copy() powerlong_shifted.iloc[1:,:] = powerlong.iloc[:-1,:].values committedlong_shifted = committedlong.copy() committedlong_shifted.iloc[1:,:] = committedlong.iloc[:-1,:].values ramping = powerlong - powerlong_shifted startups = committedlong.astype(int) - committedlong_shifted.astype(int) ramping.drop([ramping.index[0]],inplace=True); startups.drop([startups.index[0]],inplace=True) CostStartUp = pd.DataFrame(index=startups.index,columns=startups.columns) for u in CostStartUp: if u in dfin['CostStartUp'].index: CostStartUp[u] = startups[startups>0][u].fillna(0) * dfin['CostStartUp'].loc[u,'CostStartUp'] else: print('Unit ' + u + ' not found in input table CostStartUp!') CostShutDown = pd.DataFrame(index=startups.index,columns=startups.columns) for u in CostShutDown: if u in dfin['CostShutDown'].index: CostShutDown[u] = startups[startups<0][u].fillna(0) * dfin['CostShutDown'].loc[u,'CostShutDown'] else: print('Unit ' + u + ' not found in input table CostShutDown!') CostRampUp = pd.DataFrame(index=ramping.index,columns=ramping.columns) for u in CostRampUp: if u in dfin['CostRampUp'].index: CostRampUp[u] = ramping[ramping>0][u].fillna(0) * dfin['CostRampUp'].loc[u,'CostRampUp'] else: print('Unit ' + u + ' not found in input table CostRampUp!') CostRampDown = pd.DataFrame(index=ramping.index,columns=ramping.columns) for u in CostRampDown: if u in dfin['CostRampDown'].index: CostRampDown[u] = ramping[ramping<0][u].fillna(0) * dfin['CostRampDown'].loc[u,'CostRampDown'] else: print('Unit ' + u + ' not found in input table CostRampDown!') costs['CostStartUp'] = CostStartUp.sum(axis=1).fillna(0) costs['CostShutDown'] = CostShutDown.sum(axis=1).fillna(0) costs['CostRampUp'] = CostRampUp.sum(axis=1).fillna(0) costs['CostRampDown'] = CostRampDown.sum(axis=1).fillna(0) #%% Variable cost: costs['CostVariable'] = (results['OutputPower'] * dfin['CostVariable']).fillna(0).sum(axis=1) #%% Transmission cost: costs['CostTransmission'] = (results['OutputFlow'] * dfin['PriceTransmission']).fillna(0).sum(axis=1) #%% Shedding cost: costs['CostLoadShedding'] = (results['OutputShedLoad'] * dfin['CostLoadShedding']).fillna(0).sum(axis=1) #%% Heating costs: costs['CostHeatSlack'] = (results['OutputHeatSlack'] * dfin['CostHeatSlack']).fillna(0).sum(axis=1) CostHeat = pd.DataFrame(index=results['OutputHeat'].index,columns=results['OutputHeat'].columns) for u in CostHeat: if u in dfin['CHPPowerLossFactor'].index: CostHeat[u] = dfin['CostVariable'][u].fillna(0) * results['OutputHeat'][u].fillna(0) * dfin['CHPPowerLossFactor'].loc[u,'CHPPowerLossFactor'] else: CostHeat[u] = dfin['CostVariable'][u].fillna(0) * results['OutputHeat'][u].fillna(0) costs['CostHeat'] = CostHeat.sum(axis=1).fillna(0) #%% Lost loads: # NB: the value of lost load is currently hard coded. This will have to be updated # Locate prices for LL #TODO: costs['LostLoad'] = 80e3* (results['LostLoad_2D'].reindex(timeindex).sum(axis=1).fillna(0) + results['LostLoad_2U'].reindex(timeindex).sum(axis=1).fillna(0) + results['LostLoad_3U'].reindex(timeindex).sum(axis=1).fillna(0)) \ + 100e3*(results['LostLoad_MaxPower'].reindex(timeindex).sum(axis=1).fillna(0) + results['LostLoad_MinPower'].reindex(timeindex).sum(axis=1).fillna(0)) \ + 70e3*(results['LostLoad_RampDown'].reindex(timeindex).sum(axis=1).fillna(0) + results['LostLoad_RampUp'].reindex(timeindex).sum(axis=1).fillna(0)) #%% Spillage: costs['Spillage'] = 1 * results['OutputSpillage'].sum(axis=1).fillna(0) #%% Plotting # Drop na columns: costs.dropna(axis=1, how='all',inplace=True) # Delete all-zero columns: # costs = costs.loc[:, (costs != 0).any(axis=0)] sumcost = costs.cumsum(axis=1) sumcost['OutputSystemCost'] = results['OutputSystemCost'] sumcost.plot(title='Cumulative sum of the cost components') #%% Warning if significant error: diff = (costs.sum(axis=1) - results['OutputSystemCost']).abs() if diff.max() > 0.01 * results['OutputSystemCost'].max(): logging.critical('There are significant differences between the cost computed ex post and and the cost provided by the optimization results!') return costs,sumcost
[docs]def get_units_operation_cost(inputs, results): """ Function that computes the operation cost for each power unit at each instant of time from the DispaSET results Operation cost includes: CostFixed + CostStartUp + CostShutDown + CostRampUp + CostRampDown + CostVariable :param inputs: DispaSET inputs :param results: DispaSET results :returns out: Dataframe with the the power units in columns and the operation cost at each instant in rows Main Author: @AbdullahAlawad """ datain = ds_to_df(inputs) #DataFrame with startup times for each unit (1 for startup) StartUps = results['OutputCommitted'].copy() for u in StartUps: values = StartUps.loc[:, u].values diff = -(np.roll(values, 1) - values ) diff[diff <= 0] = 0 StartUps[u] = diff #DataFrame with shutdown times for each unit (1 for shutdown) ShutDowns = results['OutputCommitted'].copy() for u in ShutDowns: values = ShutDowns.loc[:, u].values diff = (np.roll(values, 1) - values ) diff[diff <= 0] = 0 ShutDowns[u] = diff #DataFrame with ramping up levels for each unit at each instant (0 for ramping-down & leveling out) RampUps = results['OutputPower'].copy() for u in RampUps: values = RampUps.loc[:, u].values diff = -(np.roll(values, 1) - values ) diff[diff <= 0] = 0 RampUps[u] = diff #DataFrame with ramping down levels for each unit at each instant (0 for ramping-up & leveling out) RampDowns = results['OutputPower'].copy() for u in RampDowns: values = RampDowns.loc[:, u].values diff = (np.roll(values, 1) - values ) diff[diff <= 0] = 0 RampDowns[u] = diff FiexedCost = results['OutputCommitted'].copy() StartUpCost = results['OutputCommitted'].copy() ShutDownCost = results['OutputCommitted'].copy() RampUpCost = results['OutputCommitted'].copy() RampDownCost = results['OutputCommitted'].copy() VariableCost = results['OutputCommitted'].copy() UnitOperationCost = results['OutputCommitted'].copy() OperatedUnitList = results['OutputCommitted'].columns for u in OperatedUnitList: unit_indexNo = inputs['units'].index.get_loc(u) FiexedCost.loc[:,[u]] = np.array(results['OutputCommitted'].loc[:,[u]])*inputs['parameters']['CostFixed']['val'][unit_indexNo] StartUpCost.loc[:,[u]] = np.array(StartUps.loc[:,[u]])*inputs['parameters']['CostStartUp']['val'][unit_indexNo] ShutDownCost.loc[:,[u]] = np.array(ShutDowns.loc[:,[u]])*inputs['parameters']['CostShutDown']['val'][unit_indexNo] RampUpCost.loc[:,[u]] = np.array(RampUps.loc[:,[u]])*inputs['parameters']['CostRampUp']['val'][unit_indexNo] RampDownCost.loc[:,[u]] = np.array(RampDowns.loc[:,[u]])*inputs['parameters']['CostRampDown']['val'][unit_indexNo] VariableCost.loc[:,[u]] = np.array(datain['CostVariable'].loc[:,[u]])*np.array(results['OutputPower'][u]).reshape(-1,1) UnitOperationCost = FiexedCost+StartUpCost+ShutDownCost+RampUpCost+RampDownCost+VariableCost return UnitOperationCost